104 research outputs found

    Sequential Logistic Principal Component Analysis (SLPCA): Dimensional Reduction in Streaming Multivariate Binary-State System

    Full text link
    Sequential or online dimensional reduction is of interests due to the explosion of streaming data based applications and the requirement of adaptive statistical modeling, in many emerging fields, such as the modeling of energy end-use profile. Principal Component Analysis (PCA), is the classical way of dimensional reduction. However, traditional Singular Value Decomposition (SVD) based PCA fails to model data which largely deviates from Gaussian distribution. The Bregman Divergence was recently introduced to achieve a generalized PCA framework. If the random variable under dimensional reduction follows Bernoulli distribution, which occurs in many emerging fields, the generalized PCA is called Logistic PCA (LPCA). In this paper, we extend the batch LPCA to a sequential version (i.e. SLPCA), based on the sequential convex optimization theory. The convergence property of this algorithm is discussed compared to the batch version of LPCA (i.e. BLPCA), as well as its performance in reducing the dimension for multivariate binary-state systems. Its application in building energy end-use profile modeling is also investigated.Comment: 6 pages, 4 figures, conference submissio

    Social Game for Building Energy Efficiency: Utility Learning, Simulation, and Analysis

    Full text link
    We describe a social game that we designed for encouraging energy efficient behavior amongst building occupants with the aim of reducing overall energy consumption in the building. Occupants vote for their desired lighting level and win points which are used in a lottery based on how far their vote is from the maximum setting. We assume that the occupants are utility maximizers and that their utility functions capture the tradeoff between winning points and their comfort level. We model the occupants as non-cooperative agents in a continuous game and we characterize their play using the Nash equilibrium concept. Using occupant voting data, we parameterize their utility functions and use a convex optimization problem to estimate the parameters. We simulate the game defined by the estimated utility functions and show that the estimated model for occupant behavior is a good predictor of their actual behavior. In addition, we show that due to the social game, there is a significant reduction in energy consumption

    Environmental Sensing by Wearable Device for Indoor Activity and Location Estimation

    Full text link
    We present results from a set of experiments in this pilot study to investigate the causal influence of user activity on various environmental parameters monitored by occupant carried multi-purpose sensors. Hypotheses with respect to each type of measurements are verified, including temperature, humidity, and light level collected during eight typical activities: sitting in lab / cubicle, indoor walking / running, resting after physical activity, climbing stairs, taking elevators, and outdoor walking. Our main contribution is the development of features for activity and location recognition based on environmental measurements, which exploit location- and activity-specific characteristics and capture the trends resulted from the underlying physiological process. The features are statistically shown to have good separability and are also information-rich. Fusing environmental sensing together with acceleration is shown to achieve classification accuracy as high as 99.13%. For building applications, this study motivates a sensor fusion paradigm for learning individualized activity, location, and environmental preferences for energy management and user comfort.Comment: submitted to the 40th Annual Conference of the IEEE Industrial Electronics Society (IECON

    Distributed Control of Multi-zone HVAC Systems Considering Indoor Air Quality

    Full text link
    This paper studies a scalable control method for multi-zone heating, ventilation and air-conditioning (HVAC) systems to optimize the energy cost for maintaining thermal comfort and indoor air quality (IAQ) (represented by CO2) simultaneously. This problem is computationally challenging due to the complex system dynamics, various spatial and temporal couplings as well as multiple control variables to be coordinated. To address the challenges, we propose a two-level distributed method (TLDM) with a upper level and lower level control integrated. The upper level computes zone mass flow rates for maintaining zone thermal comfort with minimal energy cost, and then the lower level strategically regulates zone mass flow rates and the ventilation rate to achieve IAQ while preserving the near energy saving performance of upper level. As both the upper and lower level computation are deployed in a distributed manner, the proposed method is scalable and computationally efficient. The near-optimal performance of the method in energy cost saving is demonstrated through comparison with the centralized method. In addition, the comparisons with the existing distributed method show that our method can provide IAQ with only little increase of energy cost while the latter fails. Moreover, we demonstrate our method outperforms the demand controlled ventilation strategies (DCVs) for IAQ management with about 8-10% energy cost reduction.Comment: 12 pages, 12 figure
    • …
    corecore